
Exploratory Data Analysis

謝舒凱 Shu-Kai Hsieh

January 6, 2015

Contents

1 Introduction 2

2 Essential summary statistics 2

3 Plotting 4

4 Spotting problems using graphics and visualization 17

4.1 Typical problems revealed by data summaries . 17

5 EDA with data.table Package 18

5.1 Summarizing Data Within Groups . 20

5.2 Exlporing data . 21

5.3 Merging data . 22

5.4 EDA . 26

clear R's memory
rm(list=ls())
where R is currently looking
getwd()
tell R where to look
setwd("~/Coding/R_lab/Linguistics Data Analysis with R/")

1

1 INTRODUCTION 2

1 Introduction

Once you've loaded your data and cleaned and transformed it into a suitable state, you get
to start asking questions like "what does it all mean?" The two main tools at your disposal are
summary statistics - means and medians, variances, and counts - and plots (or graphs of the
data). (Modeling comes later, because you need to understand your data before you can model
it properly.)

You can spot some problems just by using summary statistics; other problems are easier to find
visually.So the main learnings from this units:

• Summary statistics (based on median and its variants, which are robust to outliers)

• Visualization techniques (in stem-and-leaf, letter values, and bagplots): know how to
draw standard plots and manipulate those plots in simple ways.

• First regression model in Resistant line and refined methods in smoothing data and me-
dian polish.

2 Essential summary statistics

We've already come across many of the functions for calculating summary statistics, so this
section is partly a recap.

We usually use summary() to first look at the data.

custdata <- read.table('custdata2.tsv', header=T, sep='\t')
summary(custdata)

custid sex is.employed income
Min. : 2068 F:386 Mode :logical Min. : 30
1st Qu.: 346832 M:524 FALSE:62 1st Qu.: 19000
Median : 709044 TRUE :593 Median : 38350
Mean : 700502 NA's :255 Mean : 57684
3rd Qu.:1043725 3rd Qu.: 70162
Max. :1414286 Max. :615000
##
marital.stat health.ins
Divorced/Separated:146 Mode :logical
Married :469 FALSE:119
Never Married :203 TRUE :791

2 ESSENTIAL SUMMARY STATISTICS 3

Widowed : 92 NA's :0
##
##
##
housing.type recent.move num.vehicles
Homeowner free and clear :151 Mode :logical Min. :0.00
Homeowner with mortgage/loan:390 FALSE:768 1st Qu.:1.00
Occupied with no rent : 11 TRUE :111 Median :2.00
Rented :327 NA's :31 Mean :1.91
NA's : 31 3rd Qu.:2.00
Max. :6.00
NA's :31
age state.of.res
Min. :18.00 California : 92
1st Qu.:39.00 Pennsylvania: 67
Median :50.00 New York : 65
Mean :51.85 Texas : 51
3rd Qu.:64.00 Michigan : 48
Max. :93.00 Ohio : 48
(Other) :539

Let's walk through the example taken from Cotton (2013).

• the obama_vs_mccain dataset contains the fractions of people voting for Obama and Mc-
Cain in the 2008 US presidential elections, along with some contextual background infor-
mation on demographics.

load("~/Linguistic.Data.Science/Corpus.Processing.Method.I.2014-5.ntu/week.7/obama_vs_mccain.rda")
obama <- obama_vs_mccain$Obama
mean(obama)
median(obama)
range(obama)
var(obama)
sd(obama)
quantile(obama); quantile(obama, c(0.3, 0.6, 0.99))
summary(obama)

• The table() doesn't make sense for the obama variable (or many numeric variables) since
each value is unique. Recall that we can use cut() to combine it, so that we can see how
many values fall into different bins:

3 PLOTTING 4

table(cut(obama,seq.int(0,100,10)))

##
(0,10] (10,20] (20,30] (30,40] (40,50] (50,60] (60,70] (70,80]
0 0 0 8 16 16 9 1
(80,90] (90,100]
0 1

plot it

• The col() calculates correlations between numeric vectors, The cancor() (short for 'canon-
ical correlation') provides extra details, and the cov() function calculates covariances:

with(obama_vs_mccain, cor(Obama, McCain)) # almost perfect negative correlation

[1] -0.9981189

3 Plotting

• Recall that the graph systems in R: base, lattice, ggplot2

Question: [1] Does voter income affect turnout at the polls? (scatterplot)

Take 1: base Graphics

Although plot will simply ignore missing values,
for tidiness let's remove the rows with missing Turnout values:

obama_vs_mccain <- obama_vs_mccain[!is.na(obama_vs_mccain$Turnout),]
then create a simple scatterplot
with(obama_vs_mccain, plot(Income, Turnout))

3 PLOTTING 5

25000 30000 35000 40000

50
60

70

Income

Tu
rn

ou
t

what's the difference with the following?
#obama_vs_mccain_2 <- na.omit(obama_vs_mccain)
#with(obama_vs_mccain_2, plot(Income, Turnout))

customize the plot

with(obama_vs_mccain, plot(Income, Turnout, col = "violet", pch = 20))

25000 30000 35000 40000

50
60

70

Income

Tu
rn

ou
t

Log scales are possible by setting the log argument.
log = "x" means use a logarithmic x-scale,

3 PLOTTING 6

log = "y" means use a logarithmic y-scale, and log = "xy" makes both scales logarithmic.

with(obama_vs_mccain, plot(Income, Turnout, col = "violet", pch = 20, log = "xy"))

25000 30000 40000

50
60

70

Income

Tu
rn

ou
t

Take 2: ggplot2

library(ggplot2)

A simple scatterplot
ggplot(obama_vs_mccain, aes(Income, Turnout)) +

geom_point()

3 PLOTTING 7

50

60

70

20000 25000 30000 35000 40000
Income

Tu
rn

ou
t

ggplot(obama_vs_mccain, aes(Income, Turnout)) +
geom_point(color = "violet", shape = 20, log ="xy")

50

60

70

20000 25000 30000 35000 40000
Income

Tu
rn

ou
t

ggplot(obama_vs_mccain, aes(Income, Turnout)) +
geom_point(color = "violet", shape = 20) +
scale_x_log10(breaks = seq(2e4, 4e4, 1e4)) +
scale_y_log10(breaks = seq(50, 75, 5))

To split the plot into individual panels, we add a facet.

3 PLOTTING 8

ggplot(obama_vs_mccain, aes(Income, Turnout)) +
geom_point(color = "violet", shape = 20) +
scale_x_log10(breaks = seq(2e4, 4e4, 1e4)) +
scale_y_log10(breaks = seq(50, 75, 5)) +
facet_wrap(~ Region, ncol = 5)

I II III IV IX

V VI VII VIII X
50
55
60
65
70
75

50
55
60
65
70
75

3000040000 3000040000 3000040000 3000040000 3000040000
Income

Tu
rn

ou
t

• ggplots can be stored in variables and added to sequentially.

#As usual, wrapping the expression in parentheses makes it auto-print:

(gg1 <- ggplot(obama_vs_mccain, aes(Income, Turnout)) +
geom_point()

)

3 PLOTTING 9

50

60

70

20000 25000 30000 35000 40000
Income

Tu
rn

ou
t

(gg2 <- gg1 +
theme(axis.text.x = element_text(angle = 30, hjust = 1))

)

50

60

70

20000
25000

30000
35000

40000

Income

Tu
rn

ou
t

Histogram

#the distribution of the percentage of votes for Obama
#(calculated by default by Sturges's algorithM)
with(obama_vs_mccain, hist(Obama))

3 PLOTTING 10

Histogram of Obama

Obama

F
re

qu
en

cy

30 40 50 60 70 80 90

0
5

10
15

experiment with the width of bins in order to get
a more complete understanding of the distribution.
with(obama_vs_mccain,

hist(Obama, 4, main = "An exact number of bins")
)

An exact number of bins

Obama

F
re

qu
en

cy

20 40 60 80 100

0
10

20
30

with(obama_vs_mccain,
hist(Obama, seq.int(0, 100, 5), main = "A vector of bin edges")
#)

3 PLOTTING 11

ggplot(obama_vs_mccain, aes(Obama)) +
geom_histogram(binwidth = 5)

0.0

2.5

5.0

7.5

40 60 80 100
Obama

co
un

t

You can choose between counts and densities by
passing the special names ..count.. or ..density..
to the y-aesthetic.
ggplot(obama_vs_mccain, aes(Obama, ..density..)) +

geom_histogram(binwidth = 5)

0.00

0.01

0.02

0.03

0.04

40 60 80 100
Obama

de
ns

ity

Boxplot

3 PLOTTING 12

If you want to explore the distribution of lots of related variables, you could draw lots of his-
tograms. For example, if you wanted to see the distribution of Obama votes by US region, you
could use latticing/faceting to draw 10 histograms.

This is just about feasible, but it doesn't scale much further. If you need a hundred histograms,
the space requirements can easily overwhelm the largest monitor. Box plots (sometimes called
box and whisker plots) are a more space-efficient alternative that make it easy to compare many
distributions at once. You don't get as much detail as with a histogram or kernel density plot,
but simple higher-or-lower and narrower-or-wider comparisons can easily be made.

base
boxplot(Obama ~ Region, data = obama_vs_mccain)

I II III IX VI VIII

40
60

80

This type of plot is often clearer if we reorder
the box plots from smallest to largest, in some sense.
ovm <- within(

obama_vs_mccain,
Region <- reorder(Region, Obama, median)

)
boxplot(Obama ~ Region, data = ovm)

3 PLOTTING 13

VI IV X V II I III

40
60

80

ggplot2
ggplot(ovm, aes(Region, Obama)) +

geom_boxplot()

40

60

80

VI VIII IV VII X V IX II I III
Region

O
ba

m
a

Barchart

Bar charts (a.k.a. bar plots) are the natural way of displaying numeric variables split by a cate-
gorical variable.

3 PLOTTING 14

look at the distribution of religious identification across
the US states. Data for Alaska and Hawaii are not included
in the dataset, so we can remove those records:
ovm <- ovm[!(ovm$State %in% c("Alaska", "Hawaii")),]

ggplot2 requires a tiny bit of work be done to the data to replicate this plot. We need the data in long form, so we must first melt the columns that we need:
require(reshape2)

Loading required package: reshape2

religions_long <- melt(
ovm,
id.vars = "State",
measure.vars = c("Catholic", "Protestant", "Non.religious", "Other")

)

Like base, gplot2 defaults to vertical bars; adding coord_flip swaps this. Finally, since we already have the lengths of each bar in the dataset (without further calculation) we must pass stat = "identity" to the geom. Bars are stacked by default,
ggplot(religions_long, aes(State, value, fill = variable)) +

geom_bar(stat = "identity") +
coord_flip()

3 PLOTTING 15

AlabamaArizonaArkansasCaliforniaColoradoDelawareDistrict of ColumbiaFloridaGeorgiaIdahoIllinoisIndianaIowaKansasKentuckyLouisianaMaineMarylandMassachusettsMichiganMinnesotaMissouriMontanaNebraskaNevadaNew HampshireNew JerseyNew MexicoNew YorkNorth CarolinaNorth DakotaOhioOklahomaOregonRhode IslandSouth CarolinaSouth DakotaTennesseeUtahVermontVirginiaWashingtonWest VirginiaWisconsinWyoming

0 255075100
value

S
ta

te

variable

Catholic

Protestant

Non.religious

Other

To avoid the bars being stacked, we would have to pass the argument position = "dodge" to geom_bar.

ggplot(religions_long, aes(State, value, fill = variable)) +
geom_bar(stat = "identity", position = "dodge") +
coord_flip()

AlabamaArizonaArkansasCaliforniaColoradoDelawareDistrict of ColumbiaFloridaGeorgiaIdahoIllinoisIndianaIowaKansasKentuckyLouisianaMaineMarylandMassachusettsMichiganMinnesotaMissouriMontanaNebraskaNevadaNew HampshireNew JerseyNew MexicoNew YorkNorth CarolinaNorth DakotaOhioOklahomaOregonRhode IslandSouth CarolinaSouth DakotaTennesseeUtahVermontVirginiaWashingtonWest VirginiaWisconsinWyoming

0 20406080
value

S
ta

te

variable

Catholic

Protestant

Non.religious

Other

The other possibility for that argument is position = "fill", which creates stacked bars that are all the same height, ranging from 0 to 100%. Try it!

To avoid the bars being stacked, we would have to pass the argument position = "dodge" to
geom_bar.

3 PLOTTING 16

ggplot(religions_long, aes(State, value, fill = variable)) +
geom_bar(stat = "identity", position = "dodge") +
coord_flip()

AlabamaArizonaArkansasCaliforniaColoradoDelawareDistrict of ColumbiaFloridaGeorgiaIdahoIllinoisIndianaIowaKansasKentuckyLouisianaMaineMarylandMassachusettsMichiganMinnesotaMissouriMontanaNebraskaNevadaNew HampshireNew JerseyNew MexicoNew YorkNorth CarolinaNorth DakotaOhioOklahomaOregonRhode IslandSouth CarolinaSouth DakotaTennesseeUtahVermontVirginiaWashingtonWest VirginiaWisconsinWyoming

0 20406080
value

S
ta

te

variable

Catholic

Protestant

Non.religious

Other

• We can see that there is a definite positive correlation between income and turnout, and
it's stronger on the log-log scale.

Question: [2] Does the relationship hold across all of the USA?

To answer this, we can split the data up into the 10 Standard Federal Regions given in theRegion
column, and plot each of the subsets in a 'matrix' in one figure.

library(hexbin)

Error in library(hexbin): there is no package called 'hexbin'

library(ggplot2)
custdata2 <- read.table('custdata2.tsv', header=T, sep='\t')

ggplot(custdata2, aes(x=age,y=income)) +
geom_hex(binwidth=c(5,10000)) +
geom_smooth(color = "white", se = F) +
ylim(0,200000)

4 SPOTTING PROBLEMS USING GRAPHICS AND VISUALIZATION 17

geom_smooth: method="auto" and size of largest group is <1000, so using loess.
Use 'method = x' to change the smoothing method.

Warning: Removed 32 rows containing missing values (stat_smooth).

0

50000

100000

150000

200000

20 40 60 80
age

in
co

m
e

4 Spotting problems using graphics and visualization

4.1 Typical problems revealed by data summaries

Missing values Invalid values and outliers Data range: How narrow is 'too narrow' a data
range?

5 EDA WITH DATA.TABLE PACKAGE 18

Key takeaways

• Take the time to examine your data before diving into the modeling.

• The summary command helps you spot issues with data range, units, data type,
and missing or invalid values.

• Visualization additionally gives you a sense of data distribution and relation-
ships among variables.

• Visualization is an iterative process and helps answer questions about the data.
Time spent here is time not wasted during the modeling process.

5 EDA with data.table Package

library(data.table)
salaries <- read.csv("http://dgrtwo.github.io/pages/lahman/Salaries.csv")
salaries <- read.csv("Salaries.csv")
use the as.data.table function to replace salaries with a data.table version.
salaries = as.data.table(salaries)
salaries

yearID teamID lgID playerID salary
1: 1985 BAL AL murraed02 1472819
2: 1985 BAL AL lynnfr01 1090000
3: 1985 BAL AL ripkeca01 800000
4: 1985 BAL AL lacyle01 725000
5: 1985 BAL AL flanami01 641667

23952: 2013 WAS NL matthry01 504500
23953: 2013 WAS NL lombast02 501250
23954: 2013 WAS NL ramoswi01 501250
23955: 2013 WAS NL rodrihe03 501000
23956: 2013 WAS NL moorety01 493000

Notice that it contains the same information, but only shows the first five rows, then the last five
rows, which is generally a more convenient representation. This more compact way of printing
a data.table is the first benefit of using the package.

A lot of things work just the same way as they do in a data.frame.

5 EDA WITH DATA.TABLE PACKAGE 19

salaries$salary
salaries[1,]
salaries[1:6,]

One thing that did work on data frames but doesn't work on data tables is extracting a
column based on an index. In a data.frame, you could extract the first column by putting the
index after the comma:

salaries[,1]
But that doesn't work in data.table. Instead, you
can put the name of the column, without
quotes, after the comma:
salaries[,yearID]

#You can also grab multiple columns (for example, just the year and the salary) using list:
salaries[, list(yearID, salary)]

salaries[yearID > 2000,]
selected just the American League teams.
salaries[lgID == "AL",]
filter for all the rows in the American League that were after 1990.
salaries[lgID == "AL" & yearID >= 1990,]

#We can also sort the data easily, using the order function in the area before the comma:
salaries[order(salary),]

What if we want to sort first by year,
and then breaking ties with salary? We can do that
by providing two arguments to the order function:
salaries[order(yearID, salary),]

Note that we can perform multiple operations all in a sequence, by saving the intermediate
results. For instance, we can first perform a filtering operation and save it as salaries.filtered:

salaries.filtered = salaries[lgID == "AL" & yearID >= 1990,]

Then we can sort it by salary and save it into a new data table, which is now both filtered and
sorted.

5 EDA WITH DATA.TABLE PACKAGE 20

salaries.filtered.sorted = salaries.filtered[order(salary),]
salaries.filtered.sorted

yearID teamID lgID playerID salary
1: 1993 NYA AL jamesdi01 0
2: 1993 NYA AL silveda01 10900
3: 1994 CHA AL carych01 50000
4: 1990 BAL AL bellju01 100000
5: 1990 BAL AL brownma03 100000

10023: 2013 NYA AL rodrial01 29000000
10024: 2012 NYA AL rodrial01 30000000
10025: 2011 NYA AL rodrial01 32000000
10026: 2009 NYA AL rodrial01 33000000
10027: 2010 NYA AL rodrial01 33000000

These operations let us easily explore the data and answer basic questions.

5.1 Summarizing Data Within Groups

In our last segment we learned how to download a dataset on baseball player salaries and turn
it into a data table, and then to perform some basic organizations on it like filtering and sorting.
Now we're going to learn about a more sophisticated and powerful way of processing the data,
namely performing summary operations within groups. This is an important and omnipresent
task in data analysis.

mean(salaries$salary)
max(salaries$salary)
salaries[yearID == 2000,]$salary
mean(salaries[yearID == 2000,]$salary)
summarized.year = salaries[, mean(salary), by="yearID"]

Warning in gmean(salary): Group 21 summed to more than type 'integer' can hold
so the result has been coerced to 'numeric' automatically, for convenience.

summarized.year = salaries[, list(Average=mean(salary)), by="yearID"]

Warning in gmean(salary): Group 21 summed to more than type 'integer' can hold
so the result has been coerced to 'numeric' automatically, for convenience.

5 EDA WITH DATA.TABLE PACKAGE 21

summarized.year = salaries[, list(Average=mean(salary), Maximum=max(salary)), by="yearID"]
summarized.year

summarized.lg = salaries[, list(Average=mean(salary), Maximum=max(salary)), by="lgID"]

summarized.year.lg = salaries[, list(Average=mean(salary), Maximum=max(salary)), by=c("yearID", "lgID")]

summarized.team = salaries[, list(Average=mean(salary), Maximum=max(salary)), by="teamID"]

5.2 Exlporing data

ggplot(salaries, aes(yearID, salary)) + geom_point()

0e+00

1e+07

2e+07

3e+07

1985 1990 1995 2000 2005 2010
yearID

sa
la

ry

ggplot(summarized.year, aes(yearID, Average)) + geom_line()

5 EDA WITH DATA.TABLE PACKAGE 22

1e+06

2e+06

3e+06

1985 1990 1995 2000 2005 2010
yearID

A
ve

ra
ge

ggplot(summarized.year.lg, aes(yearID, Average, col=lgID)) + geom_line()

1e+06

2e+06

3e+06

1985 1990 1995 2000 2005 2010
yearID

A
ve

ra
ge

lgID

AL

NL

5.3 Merging data

View(Salaries)

We find that the players are not represented by their actual first and last names- they're repre-
sented by some kind of ID. This ID looks pretty unhelpful: why not just put their names in that
column?

5 EDA WITH DATA.TABLE PACKAGE 23

The first reason is that there are multiple players in history that have the same name, and at
that point if you used their names to identify them, it wouldn't be possible to tell them apart
in the data. Meanwhile, these IDs are guaranteed to be unique per player. There are other
advantages: for example, the player ID is shorter and therefore takes up less storage space-
but the uniqueness is the most important. That ID can be used to connect this column to other
datasets.

master = read.csv("http://dgrtwo.github.io/pages/lahman/Master.csv")
master <- read.csv("Master.csv")
master <- as.data.table(master)
View(master)

This is a master list of the baseball players based on their ID. Here in the first column you can
see the playerIDs that appeared in the salaries data. But you can also see a lot of biographical
information, like their birthday and birthplace, their weight and height, the date of their death,
and most importantly, their full name.

The "by" argument defines what column we should use to merge them.
merged.salaries <- merge(salaries, master, by="playerID")

So we've combined these two tables based on this common column: we have them all in one
place. If you wanted to look for trends in salary- for instance, a connection of salary to a player's
height, weight, or birth country- you now have all the information in one data table.

One note, having their first and last names as different columns is useful, but we'd like to com-
bine them together into a new column, of first name-space-last name. One way we can create a
new column in a data.table is with the := operator:

merged.salaries[, name:= paste(nameFirst, nameLast)]

playerID yearID teamID lgID salary birthYear birthMonth birthDay
1: aardsda01 2004 SFN NL 300000 1981 12 27
2: aardsda01 2007 CHA AL 387500 1981 12 27
3: aardsda01 2008 BOS AL 403250 1981 12 27
4: aardsda01 2009 SEA AL 419000 1981 12 27
5: aardsda01 2010 SEA AL 2750000 1981 12 27

23952: zumayjo01 2011 DET AL 1400000 1984 11 9
23953: zupcibo01 1991 BOS AL 100000 1966 8 18
23954: zupcibo01 1992 BOS AL 109000 1966 8 18
23955: zupcibo01 1993 BOS AL 222000 1966 8 18

5 EDA WITH DATA.TABLE PACKAGE 24

23956: zuvelpa01 1989 ATL NL 145000 1958 10 31
birthCountry birthState birthCity deathYear deathMonth deathDay
1: USA CO Denver NA NA NA
2: USA CO Denver NA NA NA
3: USA CO Denver NA NA NA
4: USA CO Denver NA NA NA
5: USA CO Denver NA NA NA

23952: USA CA Chula Vista NA NA NA
23953: USA PA Pittsburgh NA NA NA
23954: USA PA Pittsburgh NA NA NA
23955: USA PA Pittsburgh NA NA NA
23956: USA CA San Mateo NA NA NA
deathCountry deathState deathCity nameFirst nameLast nameGiven
1: David Aardsma David Allan
2: David Aardsma David Allan
3: David Aardsma David Allan
4: David Aardsma David Allan
5: David Aardsma David Allan

23952: Joel Zumaya Joel Martin
23953: Bob Zupcic Robert
23954: Bob Zupcic Robert
23955: Bob Zupcic Robert
23956: Paul Zuvella Paul
weight height bats throws debut finalGame retroID bbrefID
1: 205 75 R R 2004-04-06 2013-09-28 aardd001 aardsda01
2: 205 75 R R 2004-04-06 2013-09-28 aardd001 aardsda01
3: 205 75 R R 2004-04-06 2013-09-28 aardd001 aardsda01
4: 205 75 R R 2004-04-06 2013-09-28 aardd001 aardsda01
5: 205 75 R R 2004-04-06 2013-09-28 aardd001 aardsda01

23952: 215 75 R R 2006-04-03 2010-06-28 zumaj001 zumayjo01
23953: 220 76 R R 1991-09-07 1994-08-04 zupcb001 zupcibo01
23954: 220 76 R R 1991-09-07 1994-08-04 zupcb001 zupcibo01
23955: 220 76 R R 1991-09-07 1994-08-04 zupcb001 zupcibo01
23956: 173 72 R R 1982-09-04 1991-05-02 zuvep001 zuvelpa01
name
1: David Aardsma
2: David Aardsma
3: David Aardsma

5 EDA WITH DATA.TABLE PACKAGE 25

4: David Aardsma
5: David Aardsma

23952: Joel Zumaya
23953: Bob Zupcic
23954: Bob Zupcic
23955: Bob Zupcic
23956: Paul Zuvella

This means assign a new column, name, and now we can give it a value based on other columns
in the dataset. The paste function is a useful function in R for combining two vectors of strings to
be separated by spaces. If we put nameFirst and nameLast, because we're within the data.table,
that we want to combine those two names into a new name.

Merging can sometimes be a bit more complicated. For example, let's bring in one more dataset,
this one a history of each player's batting statistics for each year.

batting = read.csv("http://dgrtwo.github.io/pages/lahman/Batting.csv")
batting <- read.csv("Batting.csv")
batting <- as.data.table(batting)

This is the most complex dataset yet. Here, like the salary data, we have one row per player per
year, and their team ID and league ID. But we also have many statistics summarizing how well
he did at batting that year. For instance, G represents how many games the player played in,
AB represents the number of times a player went up to bat (how many chances they had to get
a hit), H represents the number of hits, and HR represents the number of home runs he scored
(hitting the ball out of the park, which gets a run in just one hit).

Now, let's say we want to combine this data with the salary data- for example so we can see
how salary is correlated with performance. First, notice that the salary table and the batting
tabledon't share only one column of player ID: they share four: playerID, teamID, leagueID and
yearID. That's because we have multiple batting statistics and salary for each single player. This
means we won't just be merging by player: we'll be merging them based on the combination
of all four columns.

The way we do that is with the by argument to merged. Instead of giving just the playerID to
by, we give a vector of the four shared columns.

merged.batting <- merge(batting, salaries, by=c("playerID", "yearID", "teamID", "lgID"))

Now it has all the information that was in the batting dataset, but it also added a column for
salary. Another thing to note is that we don't have salary information on every player in every

5 EDA WITH DATA.TABLE PACKAGE 26

year: in particular, we've lost all information on players before 1985. There is a way we can fix
this, by adding the all.x option to the merge function:

merged.batting <- merge(batting, salaries, by=c("playerID", "yearID", "teamID", "lgID"), all.x=TRUE)

This means "keep everything in the first dataset we're merging," which is batting (all.y would
mean "keep everything in the second dataset"). Notice now that now all rows have information
in the salary column: some have NA, which means "missing value," or "not applicable." So notice
that all the rows where we have salary data get to keep their value, while all the ones that don't
get filled in by the missing value NA.

Now we can take this merged dataset and merge it with our biographical data in the master list.
Here that would be

merged.all <- merge(merged.batting, master, by="playerID")

Now we see we still have the same batting information, but we also have the biographical in-
formation from the master list- for example, each player's real name. We've created one mega-
dataset covering all three kinds of information. The Lahman baseball dataset contains a lot more
information, including player's fielding statistics, presence in the Hall of Fame, pitchers, man-
agers, and so on, all sharing these same IDs. By merging these datasets in the right way, you
can answer very complex and interesting questions.

5.4 EDA

So let's wrap up by taking all these tools together on our mega-merged dataset. Just like any
other dataset, we can filter and process this. For example, this dataset includes pitchers, who
might never go up to bat in a whole season. That could end up skewing our analysis.

#head(merged.all)

An example would be David Aardsma, who in many years never even had a single At Bat (AB
is 0). We can start by filtering out all the years in which someone has no At Bats.

merged.all <- merged.all[AB > 0,]
Now we can see that all At Bat's are at least 1.

Now, one thing baseball fans like looking for is career records. That means we want to summa-
rize across all the years that a batter played, and find, for example, the total number of home
runs each player hit. Recall that we learned to do that with "by". For example:

5 EDA WITH DATA.TABLE PACKAGE 27

#Here we create one column, Total.HR, which we define as the sum of home runs for each player, and we tell it to perform these summaries on each player individually.
summarized.batters <- merged.all[, list(Total.HR=sum(HR)), by="playerID"]

Now we can see that we've created a new data.table that contains each player's ID and their total
career home runs. But in the process, since the only thing we're summarizing by is the player
ID, we lost track of their actual first and last names. There's a simple way around that. First,
recall that we can create a new column that combines the players' first and last names using
paste and :=, and let's try the same trick again, this time on merged.all:

merged.all[, name := paste(nameFirst, nameLast)]
#Now we've added to merged.all a name column:
merged.all

Now when we perform this summary, let's do it not just on the player ID, but also on their name:

summarized.batters <- merged.all[, list(Total.HR=sum(HR)), by=c("playerID", "name")]
summarized.batters

By summarizing based on these two columns, we can keep both their ID and their real name.

Now, just like any data.table, we can sort it to find out who the top home-run hitters are. For
this we use the order function:

summarized.batters[order(Total.HR),]

playerID name Total.HR
1: aardsda01 David Aardsma 0
2: aasedo01 Don Aase 0
3: abadan01 Andy Abad 0
4: abadfe01 Fernando Abad 0
5: abadijo01 John Abadie 0

16336: rodrial01 Alex Rodriguez 654
16337: mayswi01 Willie Mays 660
16338: ruthba01 Babe Ruth 714
16339: aaronha01 Hank Aaron 755
16340: bondsba01 Barry Bonds 762

Baseball fans won't be surprised that at the top we can see Barry Bonds, Hank Aaron, Babe
Ruth, and some other legendary baseball hitters. In the same way we can summarize by other

5 EDA WITH DATA.TABLE PACKAGE 28

statistics, like total number of hits or runs. For instance, here let's add Total.R for total number
of runs, and Total.H for total number of hits.

summarized.batters <- merged.all[, list(Total.HR=sum(HR), Total.R=sum(R), Total.H=sum(H)), by=c("playerID", "name")]

summarized.batters

Now we've saved all that career information into summarized.batters.

The more a player gets hits in baseball, the more chance they have to actually score runs. That
means it's not surprising that there's a correlation between them. We can take a look at that
correlation through ggplot. We'll put total hits (Total.H) on the x-axis and total runs (Total.R) on
the y-axis.

ggplot(summarized.batters, aes(Total.H, Total.R)) + geom_point()

0

500

1000

1500

2000

0 1000 2000 3000 4000
Total.H

To
ta

l.R

Here we can see a clear correlation between the number of hits a player gets and the number of
runs.

So far each of these summaries has been of one statistic: the total number of home runs, or the
total number of hits. But some baseball statistics are calculated based on several of a player's
statistics. For example, consider the batting average, which is the number of hits a player gets,
divided by the number of times he goes up to bat.

#head(merged.all)
#So in our batting dataset, for Hank Aaron in 1955, we can see that he had 189 hits out of 602 at-bats. We'd calculate his batting average as 189/602 for that year. What if we wanted to compute each player's career batting average? It turns out that's easy with the summary operation. We add a column BattingAverage to the summary data.table, which we put as the sum of all hits divided by the sum of all at-bats.

REFERENCES 29

summarized.batters <- merged.all[, list(Total.HR=sum(HR), Total.R=sum(R), Total.H=sum(H), BattingAverage=sum(H) / sum(AB)), by=c("playerID", "name")]

summarized.batters

This kind of summary operation thus lets us generate any statistic we're interested in. We could
then, for instance, put it into a histogram to find out its distribution:

ggplot(summarized.batters, aes(BattingAverage)) + geom_histogram()

stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.

0

1000

2000

3000

0.00 0.25 0.50 0.75 1.00
BattingAverage

co
un

t

We can see that they center around about 25%, with a large number of people with close to 0
batting average, which would mostly be pitchers.

In this way you're able to test hypotheses almost as fast as you can think of them. This loop
of asking questions about your data and getting answers back is the core of exploratory data
analysis.

References
Richard Cotton. Learning R. " O'Reilly Media, Inc.", 2013.

	1 Introduction
	2 Essential summary statistics
	3 Plotting
	4 Spotting problems using graphics and visualization
	4.1 Typical problems revealed by data summaries

	5 EDA with data.table Package
	5.1 Summarizing Data Within Groups
	5.2 Exlporing data
	5.3 Merging data
	5.4 EDA

