AI 的語言世界:台大語言學研究所 謝舒凱

AI: Semantics Network Batteries-included

cover

cover

Outline

  1. AI, Deep Learning, and the (unknown) Future
  2. Cognition, Computation, Linguistics and AI : a (mis)match in Heaven?
  3. Semantic Network: Representation, Memory and Processing
  4. AI, AAI and AW (Artificial Wisdom)?

時代背景:我的 ** 不是人

Drawing

廚師、司機、醫師、健身教練、理專、律師、老師、情人(?)、。。。

常被大眾談論(與誤解)的例子

ASIMO, Boston Dynamics, up and coming

恐怖谷理論 (uncanny valley),準嗎?

人類對機器人的好感度會隨著相似度增加,相似度高達 85% 時,會讓人心生恐懼與感到詭異。(森政弘,1970)

還是,可愛與需要打敗一切恐懼

Drawing

(source: http://www.xenosystems.net/uncanny-valley/)

語音辨識

Google Web Speech API Demonstration

語音 之後,語意(理解)是關鍵。

其他的 AI 相關領域

其他參考

Deep Learning and Language Technology

Drawing

Real Time American Sign Language Video Captioning using Deep Neural Networks

機器可以自學?可以!

Drawing

機器可以自學?可以嗎?

當萬物皆可量度,我們都也只是一堆感測器 (Hsieh, 2017)

AI

Drawing

AI HERTORY: It all begins with ELIZA...

Drawing

ELIZA 加強版誰都可以實作

這不是我們所理解的「理解」吧?

YOU: My _1_ is _2_
ELIZA: How long has your _1_ been _2_ ?

YOU: _1_ 覺得我很 _2_
CELIZA: 那妳覺得妳很 _2_ 嗎?

資料夠大,即便神經網路模式也不一定穩定

Drawing

AI, Neural Network (aka Deep Learning)

deep learning = deep representation, 其梯度可以透過 chain rule 來反向傳播。 Drawing

AI, Neural Network (aka Deep Learning)

按照能夠使得損失函數 L(W) 減小的方向 (e.g. 隨機梯度下降) 來調整參數訓練神經網絡。 Drawing

Neural Network (aka Deep Learning) Typology

Drawing

(End-to-End) AI 實作快變成中學生的課外活動

Drawing Tensorflow playground

Keras: Deep Learning library in R or Python within 30 seconds

library(keras)
mnist <- dataset_mnist()
model <- keras_model_sequential() 
model %>% 
  layer_dense(units = 256, activation = 'relu', 
              input_shape = c(784)) %>% 
  layer_dropout(rate = 0.4) %>% 
  layer_dense(units = 128, activation = 'relu') %>%
  layer_dropout(rate = 0.3) %>%
  layer_dense(units = 10, activation = 'softmax')

但,我們應該假定這才是理解能力嗎

題外話

測試一下班上有沒有機器人:)

蜘蛛為何是白色的? 水手的工作?

Deep Learning: a hype or go-to algorithm?

Issues

Last miles of the way ?

"human language is one of the most complex processes to be found anywhere on our planet" (Tomasello, 2008).

Natural language understanding is sometimes referred to as an AI-complete or AI-hard problem, implying that the difficulty of these computational problems is equivalent to solving the central artificial intelligence problem.

[哲學思考] 丟一個問題給你,請想久一點

如果有機器通過了圖林測試,它還是機器嗎? Drawing

Loebner Prize Competition in Artificial Intelligence

Talking to itself/themselves (娛樂效果之外的反思.....)

Outline

  1. AI, Deep Learning, and the (unknown) Future
  2. Cognition, Computation, Linguistics and AI : a (mis)match in Heaven?
  3. Semantic Network: Representation, Memory and Processing
  4. AI, AAI and AW (Artificial Wisdom)?

Drawing

人的歷程

認識、知識、常識、意識、心識

人的語言

What is Linguistics?

順便澄清一個觀念:

Asking a linguist how many languages they speak is like asking a doctor how many diseases they have (Lynne Murphy).

What is NLP?

經驗/計算語言學 (empirical/computational linguistics) [a.k.a. Natural Language Processing] 用電腦來幫助我們回答上述問題,並產生應用。

語言複雜度的處理

計算詞彙語意學 (computational lexical semantics) 為例, 參考 2014 講義 ai-lecture2014.pdf

語言表徵與理解

Semantic memory and categorization

定義遊戲練習

Semantic memory

Cognitive scientists have found it useful to draw a distinction between declarative (factual) knowledge and procedural knowledge.

「知識救援」的個人看法

Machine Learning w/o Knowledge Representation and Annotation

More on Levels of Annotation

Units (crossing the sentence boundary) reflect the communicative function of the sentence

Topic-Focus Articulation (TFA)

Deep (Linguistic) Learning: batteries included?

But, which Semantics?

Network Representation of Semantics

Network Analysis

micro motifs and macro behavior

Small worlds:

'six degrees of separation' (Watts and Strogatz, 1998)

sw <- sample_smallworld(dim=2, size=10, nei=1, p=0.1)
plot(sw, vertex.size=6, vertex.label=NA, layout=layout_in_circle)

plot of chunk unnamed-chunk-2

Lexical network (Wordnet)

Drawing

Chinese Wordnet

Vector Semantics

Vector Semantics

Word Embeddings

Neural Semantic Network

Gallant lab Brain Viewer

Human Connectome Project (HCP)

a consortium whose goal is to map “human brain circuitry in a target number of 1200 healthy adults using cutting-edge methods of noninvasive neuroimaging”

Neural WordNet

Drawing https://www.youtube.com/watch?v=0FDtsbLZBuM

(Words/Chunks?) on the Brain: A Semantic Map of the Cortex

DeepMind 的 leader 要跟神經科學學習 / Hinton 認為 back-propagation 要打掉重練

Chinese QIEs

Chinese QIEs

Chinese QIEs

Drawing

結論,有嗎之一

AI needs greater representation from the humanities

再確認妳是人嗎? 下面這句話一秒鐘看完並說出意思 賣女孩的小火柴 請上獎領台

結論,有嗎之二

call for 同理計算 (computational empathetic communication)

人格面具,自我實現、善心、惻隱之心、同情心、助人、愛心、民主、創造、幽默、風趣、詼諧、恐懼、自卑、氣質、非理性決策(直覺

結論,有嗎之三

From AI (人工智能) to AW (人工智慧)

Kurzweil預計到 2030 年人類都會進化成半機械人(Elon Musk的 人機合一正是這項實驗, Neurolink),通過神經系統進入虛擬現實(VR)世界。事實上,AI早已改變人類行為。傳播學者 McLuhan 提出「人的延伸」,智慧手機就是「大腦延伸」。

結論,有嗎之四

Drawing

Reference

[1] Huth AG, de Heer WA, Griffiths TL, Theunissen FE, & Gallant JL (2016). Natural speech reveals the semantic maps that tile human cerebral cortex. Nature, 532 (7600), 453-8 PMID: 27121839

[2] Friedemann Pulvermüller, Bert Cappelle and Yury Shtyrov. (2013). Brain basis of meaning, words, constructions, and grammar. In: Graeme Trousdale and Thomas Hoffmann (eds.), Oxford Handbook of Construction Grammar. Oxford: Oxford University Press, 397-416.